The antisaccade task: Vector inversion contributes to a statistical summary representation of target eccentricities.
نویسندگان
چکیده
Antisaccades require the top-down suppression of a stimulus-driven prosaccade (i.e., response suppression) and the inversion of a target's spatial location to mirror-symmetrical space (i.e., vector inversion). Moreover, recent work has shown that antisaccade amplitudes are characterized by a statistical summary representation (SSR) of the target eccentricities included in a stimulus-set--a result suggesting that antisaccades are supported via the same relative visual information as perceptions. The present investigation sought to determine whether response suppression and the disruption of real-time control or vector inversion contribute to a SSR in oculomotor control. Participants completed pro- and antisaccades (target eccentricities of 10.5°, 15.5°, and 20.5°) in blocks of trials that differed with regard to the frequency that individual target eccentricities were presented. The manipulation of target eccentricity frequency was used to determine whether the most frequently presented target within a stimulus-set (i.e., the SSR) influences saccade amplitudes. Moreover, we disrupted the real-time control of prosaccades by requiring participants to suppress their response for a brief visual delay (i.e., 2000 ms: so-called delay prosaccade). As expected, antisaccades and delay prosaccades produced equivalent reaction times. In turn, amplitudes for delay prosaccades were refractory to the manipulation of target eccentricity frequency, whereas antisaccades were biased in the direction of the most frequently presented target within a stimulus-set. Accordingly, we propose that vector inversion contributes to the mediation of target eccentricities via a SSR and that such a phenomenon provides convergent evidence that a relative visual percept mediates antisaccades.
منابع مشابه
Target frequency influences antisaccade endpoint bias: Evidence for perceptual averaging
Perceptual judgments related to stimulus-sets are represented computationally different than individual items. In particular, the perceptual averaging hypothesis contends that the visual system represents target properties (e.g., eccentricity) via a statistical summary of the individual targets included within a stimulus-set. Here we sought to determine whether perceptual averaging governs the ...
متن کاملVisual versus motor vector inversions in the antisaccade task: a behavioral investigation with saccadic adaptation.
In the antisaccade task, subjects must execute an eye movement away from a visual target. Correctly executing an antisaccade requires inhibiting a prosaccade toward the visual target and programming a movement to the opposite side. This movement could be based on the inversion of the visual vector, corresponding to the distance between the fixation point and the visual target, or the motor vect...
متن کاملAdaptation of reactive and voluntary saccades: different patterns of adaptation revealed in the antisaccade task.
Sensorimotor adaptation restores and maintains the accuracy of goal-directed movements. It remains unclear whether these adaptive mechanisms modify actions by controlling peripheral premotor stages that send commands to the effectors and/or earlier processing stages involved in registration of target location. Here, we studied the effect of adaptation of saccadic eye movements, a well-establish...
متن کاملThe Frontal Eye Field Is Involved in Visual Vector Inversion in Humans – A Theta Burst Stimulation Study
In the antisaccade task, subjects are requested to suppress a reflexive saccade towards a visual target and to perform a saccade towards the opposite side. In addition, in order to reproduce an accurate saccadic amplitude, the visual saccade vector (i.e., the distance between a central fixation point and the peripheral target) must be exactly inverted from one visual hemifield to the other. Res...
متن کاملResponse Suppression Delays the Planning of Subsequent Stimulus-Driven Saccades
The completion of an antisaccade selectively increases the reaction tiME (RT) of a subsequent prosaccade: a result that has been interpreted to reflect the residual inhibition of stimulus-driven saccade networks [1], [2]. In the present investigation we sought to determine whether the increase in prosaccade RT is contingent on the constituent antisaccade planning processes of response suppressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vision
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2015